DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models.
نویسندگان
چکیده
The "radiation-induced bystander effect," in which irradiated cells can induce genomic instability in unirradiated neighboring cells, has important implications for cancer radiotherapy and diagnostic radiology as well as for human health in general. Although the mechanisms of this effect remain to be elucidated, we reported previously that DNA double-strand breaks (DSBs), directly measured by gamma-H2AX focus formation assay, are induced in bystander cultured cells. To overcome the deficiencies of cultured cell studies, we examined alpha-particle microbeam irradiation-induced bystander effects in human tissue models, which preserve the three-dimensional geometric arrangement and communication of cells present in tissues in vivo. In marked contrast to DNA DSB dynamics in irradiated cells, in which maximal DSB formation is seen 30 min after irradiation, the incidence of DSBs in bystander cells reached a maximum by 12 to 48 h after irradiation, gradually decreasing over the 7-day time course. At the maxima, 40% to 60% of bystander cells were affected, a 4- to 6-fold increase over controls. These increases in bystander DSB formation were followed by increased levels of apoptosis and micronucleus formation, by loss of nuclear DNA methylation, and by an increased fraction of senescent cells. These findings show the involvement of DNA DSBs in tissue bystander responses and support the notion that bystander DNA DSBs are precursors to widespread downstream effects in human tissues. Bystander cells exhibiting postirradiation signs of genomic instability may be more prone than unaffected cells to become cancerous. Thus, this study points to the importance of considering the indirect biological effects of radiation in cancer risk assessment.
منابع مشابه
A microbeam study of DNA double-strand breaks in bystander primary human fibroblasts.
Radiation-induced bystander effect has been well documented. However, the mechanisms are poorly understood. How we incorporate this effect into the classical models of risk assessment remains an open question. Here, the induction of bystander effect was studied by assessing DNA double-strand break (DSB) formation in situ with the rapid and sensitive gamma-H2AX focus formation assay. Utilising t...
متن کاملResidual DNA double strand breaks correlates with excess acute toxicity from radiotherapy
Introduction: A high risk for development of severe side effects after radiotherapy may be correlated with high cellular radiosensitivity. To enhance radiation therapy efficiency a fast and reliable in-vitro test is desirable to identify radiosensitive patients. The aim of present study was to identify the mechanism of radiation induced DNA double-strand breaks (DSBs) and DSB r...
متن کاملDNA damage and repair kinetics after microbeam radiation therapy emulation in living cells using monoenergetic synchrotron X-ray microbeams
A novel synchrotron-based approach, known as microbeam radiation therapy (MRT), currently shows considerable promise in increased tumour control and reduced normal tissue damage compared with conventional radiotherapy. Different microbeam widths and separations were investigated using a controlled cell culture system and monoenergetic (5.35 keV) synchrotron X-rays in order to gain further insig...
متن کاملReduced DNA damage in tumor spheroids compared to monolayer cultures exposed to ionizing radiation
Background: Several cell lines when cultured under proper condition can form three dimensional structures called multicellular tumor spheroids. Tumor spheroids are valuable in vitro models for studying physical and biological behavior of real tumors. A number of previous studies using a variety of techniques have shown no relationship between radiosensitivity and DNA strand breaks in monolayer ...
متن کاملRadiation Bystander Effects Mechanism
Introduction: Radiation Induced Bystander Effect (RIBE) which cause radiation effects in non-irradiated cells, has challenged the principle according to which radiation traversal through the nucleus of a cell is necessary for producing biological responses. What is the mechanism of this phenomenon? To have a better understanding of this rather ambiguous concept substantial number of original ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 9 شماره
صفحات -
تاریخ انتشار 2007